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1 Introduction

Over the past three years, the Computational Mechanics Co., Inc. has designed and produced

a new computational tool for modeling internal flows in solid rocket motors as part of the

project "Internal Flow Analysis by Highly-Accurate Adaptive Computational Methods"

(NAS8-37682). During the course of this effort several new algorithms for studying the

effects of moving boundaries on flow characteristics within solid propellant rocket motors have

been developed and tested on both two-dimensional planar and axisymmetric computational

domains. Of particular interest has been the development of a receding boundary algorithm

which successfully models the changing flow domain during the erosion of the propellant

within a solid rocket motor. This method relies on adaptive finite element methods that

combine node relocation techniques (r-methods), mesh refinement techniques (h-methods),

and moving boundaries to form a very powerful analysis package.

In addition to the research and development efforts in the area of moving boundaries,

considerable effort has also been focused on the following topics:

@

Implementation of a fully adaptive implicit/explicit finite element methodology to op-

timize the computational effort required to advance the solution forward in time.

Formulation and implementation of a generalized algebraic turbulence model and data

structure compatible with adaptive methodologies and applicable to completely un-

structured grids.

Testing and validation of the computational algorithms for several benchmark prob-

lems.

The success of the two-dimensional and axisymmetric analysis package in modeling the

benchmark problems suggests that extensions to realistic three-dimensional flows in cavities

with eroding boundaries is both feasible and a natural extension of the project currently

underway. The final section of this report describes some possible extensions of this project

in terms of enhancements of the two-dimensional code and the development of a fully three-

dimensional code for use in the design and analysis of solid rocket motors.

The remainder of this report presents a detailed description of the theoretical formulation,

numerical methods, and representative examples of the analysis of complex flow phenomena

occurring in solid rocket motors. The equations that model flow phenomena for this class

of problems are derived in Section 2. The associated boundary conditions are then briefly

discussed in Section 3. An implicit/explicit flow algorithm is presented next in Section 4,

while the moving boundary and remeshing algorithms are highlighted in Section 5. Section

t3 introduces adaptive strategies and the related data structures. The implementation of a



simple algebraic turbulence model is presentedin Section 7 along with a discussionof the
data structure and storagerequirements.Followingthe discussionof the algebraic turbulence

model are several numerical examples which demonstrate some of the modeling capabilities

available in the code.

2 Governing Equations

For the class of the fluid dynamic problems we are going to solve, the computational domain

may be continuously changed due to boundary motion. It is well known that for fluid

dynamic problems involving grid motion, the original Navier-Stokes equations derived from

the Eulerian approach need to be modified by using the Arbitrary Lagrangian-Eulerian

(ALE) formulation, see reference [1] for detailed derivation. It should be noted that the

ALE formulation derived in [1] is expressed in the form of Cartesian tensor notations. To

derive its axisymmetric counterpart, we first convert the Cartesian tensor notations to vector

operator forms. These vector operators can be readily transformed into axisymmetric form

using orthogonal curvilinear transformations.

Two-Dimensional Formulation of the Navier-Stokes Equations

The time-dependent Navier-Stokes equations, including grid motion, can be expressed in

tensor notations as
Oo Op(_ - _,_)
0.7+ Oz, + _'p = o (2.1)

oPU,o___V+ _° [p_,(_,__7)- ",_]+_p_,= o (2.2)
& 0

0-7+ _ [_(_'-"_') - ue,j + q,]+ ,,_= o (z.3)
where p denotes the density of the fluids, ui is the i-th component of flow velocity, uia is the

i-th component of grid velocity, and ¢: represents the total energy per unit mass. The shear

stress tensor rij can be expressed as

rO = -P60 + "_u Oxk + # \ Ox.i + Oxi ]

and the heat flux qi is
OT

q, = -k Ox--_

Here t_ and A represent the molecular and secondary viscosity, respectively. The source terms

in equations (2.1)-(2.3) are due to the grid volumetric dilatation, a = V. u a. For simplicity

and clarity, we will omit these terms in subsequent discussions.
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Axisymmetric Formulation of the Navier-Stokes Equations

In vector operator form, equations (2.1-2.3) can be expressed as

Op
o-7+ v. ;(v - v °) = o (2.4)

OpV
+

bt
v. (v - v c) ® pv + vv - v(2. + _)v. v

+ vx_(Vx v)=0

(2.5)

w +
Ot

v ._(v- v G)+ v .vv- v. (_vv. v)
(2.6)

- v._v(v.v)+v.(#VxVxV)+V.q=o

Here V is the velocity vector and V G represents grid motion.

In orthogonal curvilinear coordinate systems (el, e2, e3), these vector operators can be

expressed as:

1 O
_z

h_ Ox_ ei

hlh2h3 (h2h3Vx) + (hlh3V_) + Ox3 hlh_V3)

VxV
1

hlh2h3

hlea h2e_ h3e3

a o a

Ozl Oz_ Oz3

hl V_ h2V2 h3V3

where hi are metric scale factors.

For a cylindrical coordinate system,

hi =1, h2=r, h3=l

By expanding these vector operators in equations (2.4-2.6), and neglecting all terms

related to 0, the axisymmetric form of Navier-Stokes equations is obtained:



Equation of Continuity

0p 0(pu,)+__+__=0
_ + 0--_ Oz r

(2.7)

Multiplying equation (2.7) by r and rearranging terms, we have

a(pr) 0(pr_,) 0(v_.)
--+ +

Ot Or Oz
-0 (2.8)

Equation of motion (r-component)

0p_,(u. - W) + +
Ot Or az

pu_(_r - 47) Op OT. OTr,
+

r Or Or Oz

2_(Ou, u_) 0
____ .,---

r Or r

+

(2.9)

where

_r

_rz

OU_ OUr OUz Ur

= 2_--gT+:_v.v, v.v= a--7-+-87z+-r

= _\az + Or]

= -2#/3, if Stokes' hypothesis is applied
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Multiplying equation (2.9) by r and rearranging terms, we obtain

o(;_._,,) op,-u,(u,- u_) op,u,(_,,- _f) O(_p)
O_ + Or + Oz + 0---7-

a(_z.) o(_z.)
Or Oz

p+zoe =0

(2.10)

where

and

+2#u_
zoo= _+AV.V

(_?£r OUz Ur

v . v = o---7+ -_-z+ -

Equation of motion (z-component)

_+ +
Ot Or Oz

Op Or_r Or=_ %,

r Oz Or Oz r

(2.11)

where

CQu z

r_, = 2#---_-z +AV-V

z. = u\O z + 0_]
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Multiplying by r and rearranging terms, we have

O(pr,,=) Op,u=(,,,-,,7)
+

Ot ar

O(r_-.) 0(,.',_)_ 0
Or Oz

opru,(_, - _) o(rv)
+ az + O----Z

(2.12)

Energy Equation

-O-i+ Or Oz

Ge(u, - u_ ) + put
r Or Oz

-0

(2.13)

Multiplying by r and rearranging terms, we have

o(,-_) o[,-_(,.,,- 47) + ,.u,p] o[,-_(,.,,- ,_) + ,',-,,v]
O-----i-+ OF + Oz

Or Oz
(2.14)

To make these equations consistent with the two-dimensional planar counterpart, the

notation is changed from z to x and r to y. Depending upon the arrangement of the terms



in the governing equations, two different forms may be obtained. The first form is concluded

from equations (2.7), (2.9), (2.11), and (2.13) as

{,+ F_,,- F,_,+ (S_- S_)= o (2.15)

where

u = [p pUl pu2 e]r

pu2 (ui - ua) + P52i

(u_ - u_) + uip

(2.16)

(2.17)

0

rai

r2i

Um Tmi -- qi

(2.18)

SC = 1

Y

_(_-_) +_

(2.19)

1

y

and the viscous shear stresses are

0

TI2

um r.,2 + kT2

T11 -- _RUl,1 dr- AU2, 2

(2.20)

(2.21)



7"22 = #Ru2,2 + )_ux,1 (2.22)

_'2, = _'12 = # (ul,2 + U2,a) (2.23)

/_R = (2_t + A) = longitudinal viscosity (2.24)

It is observed that in this version, both convective and viscous fluxes are identical to

the two-dimensional planar counterpart and the additional source terms include the grid

velocity. The advantage of applying these equations in the code development is that only

the source terms need to be incorporated into the code and, therefore, the code integrity

and efficiency may be maintained. Unfortunately, it can be shown that this form is not

conservative, and thus unacceptable for the numerical implementation.

The second form is derived from equations (2.8), (2.10), (2.12), and (2.14) as

_,+ _,- _, + s °- s ° = o (2.25)

where

fi = yu = y [p pul pu2 _]r (2.26)

(2.27)

At.J

0

r2i

Um Trni -- qi

(2.28)

s ° = -[o o p o]r

#Ru_
S" = - 00_+Au_,m0

(2.29)

(2.30)



and the viscous shear stresses are

_u2
_'n = #nul,l + Au2,2 + D

Y

.ku2
"r22 = #nu2,2 + Au_,_ +

Y

(2.31)

(2.32)

r_l = r12 = #(ul,2 + u2,_) (2.33)

#n = (2# + A) = longitudinal viscosity (2.34)

This form has the advantage that the grid velocity makes no contribution to the source

terms and there is no formal difference between the axisymmetric and planar formulations

due to the grid velocity. Although this form is conservative and will be employed for the

code development, the finite element interpolation based on fi = y (p pul pu2 ¢)T will cause

severe numerical problems near the axis of singularity, y = O, since the conservation variables

u = (p pul pu2 ¢)r for all nodes that lie on this axis can not be recovered directly from ft.

We have resolved this problem by interpolating u and y separately, see Section 4.1 for a

detailed description.

3 Boundary Conditions

It is well known that the well-posedness of fluid dynamic problems can not be established

by solely considering the governing equations without investigating the associated boundary

conditions [2,3,4,5]. Moreover, the accuracy and the rate of convergence of a numerical

algorithm are also affected by the proper treatment of the numerical boundary conditions

[6-10]. On the other hand, the ability of a CFD code to simulate fluid dynamic problems

is strongly dependent on the flexibility of treating various types of boundary conditions. In

this report, instead of presenting a detailed mathematical background about these boundary

conditions, we will rather point out various types of boundary conditions that are most

often encountered in fluid dynamic problems and discuss how these boundary conditions are

implemented within the context of finite element methods.

The following boundary conditions are common to most fluid dynamic problems:

1. Open boundaries or inflow/outflow boundaries.

2. No-flow or no-penetration boundary.

3. No-slip isothermal/adiabatic boundary.

4. Porous wall boundary with mass injection.
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5. Moving boundary with prescribed velocity.

Boundary condition type 1 is usually encountered when artificial boundaries are intro-

duced to a problem in order to reduce the computational domain. In this case, boundary

conditions have to be treated carefully to handle wave reflection and disturbance propagation

for both accuracy and rate of convergence considerations [6-10].

Boundary condition type 2 is popular for inviscid flow problems and for problems involv-

ing symmetric geometry. On this type of boundary, flow is prohibited from penetrating the

boundary and is allowed only in the direction tangent to the boundary. This condition is

quite natural for solid boundaries immersed in an inviscid flow.

Boundary condition type 3 is a typical boundary condition for viscous flow problems.

The isothermal boundary simply implies that the temperature of the wall is a constant,

while adiabatic boundary means that the heat flux across the wall is zero.

Boundary conditions 4 and 5 are special features associated with the numerical simulation

of eroding or moving boundaries. Generally speaking, the eroding surface of a solid propellant

may be regarded as a porous wall with boundary motion. The burning rate and the mass

flow rate across the surface are, theoretically, dependent on the local flow conditions such as

pressure and temperature and the composition of the solid propellant. A notable empirical

formula known as Saint-Robert's law which correlates the burning rate and chamber pressure

is given by [11]. In cases where chemical reactions and combustion phenomena are not

considered, the surface of the solid propellant is usually treated as a porous wall with mass

injection, the mass injection rate being obtained from experimental data.

To avoid ambiguity in identifying the type of boundary condition at a node where two

different types of boundaries intersect, a hierarchical procedure is set up as follows based on

their relative priority:

1. porous wall boundary with boundary motion,

2. no-slip boundary condition,

3. no-flow or no-penetration boundary condition, and

4. open boundary condition.

A detailed discussion of the theoretical formulation and implementation of most of these

boundary conditions can be found in reference [20]. In this work we will discuss boundary

conditions specific to the solid rocket booster applications, namely porous/burning wall

conditions (Section 4.4).

10



4 Numerical Methods

Over the past few years, significant progress has been made in the development of new

computational methods for solving compressible Navier-Stokes equations. The approaches

described in the literature vary from fully explicit algorithms, which are computationally

inexpensive but often severely limited by stability restrictions, to fully implicit algorithms,

which are unconditionally stable but are much more expensive per time step. The selection

of which type of algorithms is optimal for a given application is generally not known a priori

and may in fact change as the features of the flowfield develop. As a result, a domain

decomposition approach is gaining popularity in the CFD community which employs an

explicit formulation in one region of the mesh and a fully implicit formulation in another,

see references [12-15,20].

In this section, a family of implicit/explicit finite element algorithms developed by

Tworzydlo, Oden, and Thornton [20] will be generalized for the solution of axisymmetric

problems with moving meshes and porous/burning wall boundary conditions. Within this

family, a fully explicit method or various versions of implicit algorithms can be obtained by

appropriate selection of implicitness parameters. This general finite element algorithm is

combined with adaptive mesh refinement (as presented in references [18,19]) and adaptive

selection of implicit/explicit zones within the computational domain. Several approaches to

the selection of implicit and explicit zones are presented.

Following the description of implicit/explicit schemes, the artificial dissipation added to

the system to suppress possible spurious solutions (due to shocks) will be outlined. The final

solution describes the implementation of the porous wall boundary condition and pressure

outflow boundary condition.

4.1 A General Family of Implicit Taylor-Galerkin Methods

In this section a general family of implicit Taylor-Galerkin methods will be derived. This

family is based on a combination of second-order Taylor series expansions in time with a

Galerkin approximation in space (one-, two-, or three-dimensional). Several implicitness

parameters are introduced, so that, depending on the particular choice, a fully explicit scheme

or a variety of implicit schemes can be recovered. The family of algorithms presented here

is a generalization to axisymmetric problems of the algorithms developed previously.

Second-Order Taylor Expansion in Time

Assume that the solution _" is given at the time moment t '_ and the solution at time t "+1 is to

be calculated. Formally, the values of the solution at moments t n and t '_+1 can be expressed

11



by the second-order Taylor expansion around an arbitrary moment t "+° (see Fig. 4.1), where

a is the implicitness parameter with values between zero and one:

"2 A_2 ""n+o
_"+1 = _+_ + (1 - a)At_"+'_ + (1- a) --f--_ +O(At 3)

• z At2 -: n+a
_" = _"+° - a_t_ "+° + a ---_-u + O( At 3)

(4.1)

By subtracting these two formulas one obtains a formula for the increment of the solution

between steps n and n + 1:

Aft = fi.+x _ _. = A_t "+° + (1 - 2a) At2--u:_"+" + O(At a)
2

(4.2)

Now it is easy to observe that:

:.n+_ :.n+_
,, = ,_ + O((,_- _)At)

so that--still preserving second-order accuracy--a second implicitness parameter _ can be

introduced into equation (4.2):

• At 2 .-n+Z

A_ = At_ "+° + (1 - 2a)--_---_ + O(At 3) (4.3)

The next step of the derivation is to express the quantities evaluated at time moments t "+_

and t n+z by quantities evaluated at the basic steps t" and t _+1. It is easy to show, using a

Taylor series expansion, that:

.,:.n+a An /

u = u + _za_ + O(At 2)
y.n+_ y.n
u = ,_ + B/x_ + O(At 2)

Substituting these formulas into equation (4.2) yields a two-parameter expansion:

(4.4)

12
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Figure 4.1: General Taylor series expansion in time
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Now, following the original idea of Lax and Wendroff, the original equation (4.1) will be sub-

stituted to equation (4.4) to replace time derivatives by space derivatives. This substitution

yields a formula for the first derivatives:

_,= _,_,,- "FL,+ s° - s° (4.5)

AA = A'_,,-/'PL, + As_- _xs_

+ "O,A_,j+ _p,_ - _p,a

(4.6)

and for the second derivatives:

+

Fi, i -- Fi, i + -

÷ (4.7)

where the relevant Jacobians are

P_j

defined as:

= 0___2__,_ 0_
0_,j ' 0fi

OS _

a_ = o---_ '

OS" A OS _
= o--if' B = o-_

It can be shown that the multiplier, y, will not affect the linearization of nonlinear invis-

cid fluxes. Moreover, Jacobians Rij will remain the same as its two-dimensionM planar

counterpart. This implies that

A

P_j = Nj, A_ = A_

where P_.j and Ai are the planar counterpart and can be found in reference [23,24]. The

Jacobians Pi can be expressed as the sum of two components as

Pi = Pi + P_

14



wherePi is the two-dimensional planar counterpart and the additional term Pi A is due to

the axisymmetric formulation. Details of P;, Qj, T, and B are given in Appendix A.

After further substitutions, the second order time derivative can be expressed as

u = Rij Fk, k-Fk,k+S _-S c ,j ,i

Since bilinear elements are used in the finite element code, any spatial derivatives higher

than order 3 will be neglected in equation (4.8). This results in the following approximation

for the second order time derivatives.

( ) + (a, sc),, + _ + _s _+ o(.,k/
u = A,P2,_,, , (4.9)
u = (A_Akfi,k),i + AiB£_ ,_ + BAkfi,k + BB_+O(t_,k)

and the incremental form of the second order time derivative can be expressed as

" ' (4.10)

+ BBA_ + O(At) + o(t_,k)

Substituting (4.5)-(4.6) and (4.9)-(4.10) into (4.2) and regrouping explicit and implicit

terms, we get

A£_ + aAt (AiA£_),i + aAtBAfL - ,,/At (/74/Aft 1), i

+'_._,_ +-_a_] =_ (_,_,- "_,,+so- so)
(4.11)

+ (_ - 2_)o(_, _)m =+ (_--_)o(_,,_)At _+ O(At_)

15



Notice that athird implicit parameter,3',wasintroducedin (4.11) to control the implicitness
of the viscousterms without affecting the order of accuracyin time.

Variational Formulation

Neglecting higher order terms and multiplying by an arbitrary test function v through (4.11)

and integrating over the domain we get

A

+ 3'At[(P,_jA_,_)v, + (P,A_)v, - (QjAaj)v

- (_)v] +
(i - 2_)/_At 2

2

+ (A, BA_t)v,, - (BAjAft,j)v - (BBAfs)v]}dFt

+ _ {aAt(n_AiA_t) v -7At[(niP_jAfij)v

+ (n,_iA_)v]_ (1 -- 2a)_At2[(n,A,_A£t)v + (niA, AjA£t,j)v]}ds
2

(4.12)

= j_ {_t[(2: - 27)_,- (s" - s_)_]

+
(1 - 2a)At 2

[-(AiAj_t,j)v,i - (A_SC)v,, + (BAj_tj)v

(1 - 2a)At2[(niA,Ajfij)v + (n,A,S¢)v] } ds+ 2

In the variational formulation (4.12), the unknowns selected for finite element interpolation

is fi = yu, or in discrete form
N

fi(=) = _ fi,¢i(_c) (4.13)
I=1

The choice of fi for the finite interpolation leads to the following computational problems:

fi becomes zero as y _ 0. This implies that the conservation variable u becomes singular,

u = lim -_ = lim __Yu (4.14)
_-o y _--.o y

16



To avoid this singularity problem, we will interpolate y and u separately for fi so that

u becomes the actual vector of unknowns in the problem. The resulting variational form

becomes

fffl {yAu.v + aAt[y(-A'_Au)v,, + y( BAu)v]

+ 7At[y(P_jAu,j)v,, + (P_jydAu)v,, + y(P, Au)vi

- y(OjA,, j)v - (Ojy,j_)v - y(_A_)_]

+
(1

2a)flAt2[y(AiAjAuj)v.i + (A, Ajy.jAu)v.i
2

+ y(A,BAu)v,i - y(BAjAuj)v - (BAjy,jAu)v - y(BBAu)v]}d_

(1 - 2a)]3At 2

2

A A

[y(niA_AjAu,j)v + (n_AiAjy,jAu) • v + y(n, AiBAu)v]ds

= f_ _[y(_; _ _)_,,_ (s, - s_)_]_ (1- 2o)_t_2 [y(A,Aju,j)v + (AiAjy,ju)vi

+ A,S¢v,, - y(BAjuj)v - (BAjy,ju)v - (BS¢)v]d_

+ fo {Atyni(F_ - ff_)v + (1 - 2a)At2[y(niAiAjuj)vf_ 2 '

+ niA,Ajy,ju).v + (niAiS¢). v]}ds

1 and/or 1 (see Appendix A) and Y,1 = 0,Since matrices B, T, Q, and P contain multiplier _

Y,2 = 1, the integrals containing these terms in equation (4.15) can be regrouped as:

17



1. Left hand side interior integrals

.

Y

+/o(oB- _ri)A,,.,_ +/I(_A,,._)d_

+/n (-aA, + cP,) (yAu. v.,) dgt

+ _ (cP,_j + bA,Aj)(yAu.jv,,)d_

where a aAt, b (] - 2a)_At:= = , C = 3,At
2

Left hand side boundary integrals

an (aniA_ - cn_P,) (yAu . v)ds

v _)d_ (4.16)

(4.17)

18



3. Right hand side interior integrals

+

faAt (S_ -- SO)•vda

(1 - 2a)At 2f_ AtS'_v + 2 [(BA2)u.v + BSC.v]} 1-dfly

+

+

£ z_t[y(F: - F_)..,1 da

(i- 2a)At 2£ /"'( F'(A'v'')+ 2

(1 - 2a)At_BAj(u j .v)d_2

(1 _a,_t:AiAj (u,j • v,i)ydfl

9 _A

2

[A, (A2u + S:) • v,,] }
d_2

(4.1s)

where

(4.19)

F_ c is the Cartesian counterpart of viscous fluxes and F_ A is the additional viscous

fluxes associated with the multiplier, _, where

F_ '4 = [0 Av 0 Auv] T (4.20)

F_ A -- [0 0 _y _v2] T

4. Right hand side boundary integrals

fonAt[yn,(F_¢ - F_) . rids 4- foa

+ fort(1-2a)At2(niAiA2)(u'v)ds2

+ foa (1 - 2a)At2niAi2 (Sc" v)ds

+ J/on(1 - 2a)At_2niAiAj (yu o • v) ds

Atn_F'_ A • vds

(4.21)
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4.2 Impllcit/Explicit Procedures

The basic idea of implicit/explicit algorithms is simple: combine the two methods to take

advantage of the superior features of each. The major advantage of the explicit method

is that element computations are relatively inexpensive and simple. Unfortunately this

method suffers from stability limitations of the time step, which in some problems leads to

prohibitively large numbers of time steps.

The implicit algorithm allows for an application of larger time steps than the explicit

method. Moreover, due to the existence of implicit boundary terms, it offers easy and

straightforward control of natural boundary conditions, particularly those involving the vis-

cous fluxes. An additional advantage is that with larger time steps no explicit artificial

dissipation is necessary, which is very important in the calculation of boundary fluxes, par-

ticularly by wall heating rates. The major disadvantage of implicit methods is a much higher

cost of element operations and a more complex and expensive solution of the resulting system

of equations.

In this section, the formulation and numerical implementation of an adaptive implicit/

explicit algorithm for compressible flows is presented. The algorithm will be based on the

general family of Taylor-Galerkin methods discussed in the previous sections.

Formulation of Implicit/Explicit Schemes

The algorithms for determining the partition must be designed so as to preserve stability, the

conservative properties, and the required order of approximation. We begin by partitioning

the domain _ into subdomains _(E) and 9t (I) where explicit and implicit schemes are to be

applied, respectively.

Some of the possible procedures are examined below.

Procedure I

The first possible approach, applied for example by Hassan, Morgan, and Peraire [25], is

based on the following two steps:

1. Perform the explicit step computations on all nodes in the mesh (fl(E) = 9t).

2. Perform the implicit computations in the subregions, where the stability criterion for

the explicit scheme: C _< 1 is violated. The solution in remaining nodes is "frozen" at

this step.
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This simple procedure has one basic disadvantage: it appears to be nonconservativeand
this disturbs the regularity of the solution in the transition zone. This is causedby the
fact that during Step 2 the "frozen" explicit nodesimpose the actual Dirichlet boundary
condition on the edgeof the implicit zone. Prescribing the Dirichlet boundary condition
for the Navier-Stokesequation meansthat there must exist an (external) sourceof fluxes
to support the prescribed state of the solution. Since no such external source exists within

the computational domain, the solution will not be conservative across the implicit/explicit

line. Due to enforcement of the Dirichlet boundary conditions, the solution may exhibit a

"ramp" or "kink" along this line.

Procedure II

Again _ is considered to be the union of two subregions _q(I) and f_(E) (see Fig. 4.2), such

that:

fl(E) N fl(0 = FE_ , f_(E) U f_(r) = f_

It is convenient to assume that the interface between the two regions coincides with the

element boundaries.

It can easily be observed that the differential equations to be solved on the two subregions

are different due to different implicitness parameters applied in each zone: _(I), flU), 7(r} in

the implicit zone and c_(E),fl(E),_ '(E) m 0 in the explicit zone. Therefore, the variational

formulation (4.15), based on the assumption of constant implicitness parameters, cannot

be applied to the domain ft. Instead, it can be applied separately to each subdomain with

additional continuation conditions across the interface. These conditions represent continuity

of the solution and satisfaction of the conservation laws across the interface and are of the

form:

u(E) = u(z)

FI ) = Fy) c

A! = AI')
on FEI (4.22)

where index n refers to the outward normal for the corresonding region (n (_) = -n(_)). The

continuity requirement also pertains to the test function, so that v (E) = v (I) = v. Note

that for general weak solutions of Euler equations the solution u need not be continuous

across the interface. However, for regularized problems and finite element interpolation, the

continuity of u is actually satisfied.

If the variational statement is formulated for this problem, then in addition to interior

integrals for each subdomain and regular boundary integrals, jump integrals across the in-
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Figure 4.2: Implicit/explicit zonesin a computational domain.
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terface appearin the formulation. Note that in the practical implementation of this scheme
weset all the interface componentsto zero. This procedurepreservesthe continuity of fluxes
and time accuracyacrossthe interfaceup to the first order.

Procedure III

The last procedure consideredhere is basedon a generalization of the weak formulation,
accordingto which the implicitnessparametersarenot constant,but arecontinuousfunctions
of the position _. For the finite elementcomputations, it is convenientto limit the choiceof
theseparametersto the finite elementsubspace,so that:

N

=
I=l

and the same holds for the other implicitness parameters 13,'_ and 6. With this assumption

additional terms show up in the variational formulation. Note that there are no additional

boundary terms resulting from the variable implicitness.

The above approach seems to be the most general and clear, with no ambiguities con-

cerning the interface conditions. To make the practical application cheaper, the implicitness

coefficients are held constant in most of the elements, and the additional terms are actually

evaluated only in the transition zones.

Selection of Implicit and Explicit Zones

The basic criterion for selection of implicit and explicit zones is simple: for a given time step

all nodes which violate the stability criterion for an explicit scheme should be treated with

the implicit scheme. According to this criterion, several options for an automatic adaptive

selection of implicit/explicit zones were implemented:

1. User-prescribed time step DT:

Within this option, the user prescribes the time step. All nodes satisfying stability

criterion for the explicit scheme (with s certain safety factor) are explicit. This means

that all the elements connected to these nodes are treated with the explicit scheme.

On all other elements the implicit scheme is applied.

2. Prescribed maximum CFL number:

In this option, the user prescribes the maximum CFL number that can occur for

elements in _. The time step is automatically selected as the maximum step satisfying

this conditioh. The choice of a maximum CFL number may be suggested by the time
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accuracyargumentsor the quality of results (it is known that, for a Taylor-Galerkin
scheme,too large a CFL number tends to smearshocks).

3. A prescribedpercentageof the domain is implicit.

In this version,the userspecifiesthe fraction of the domain which is to be treated im-
plicitly. The elementswith the strongeststability limitation (usually the smallestones)
are treated implicitly, the others are explicit. The time step is selectedto guarantee
stability of the explicit zone.

4. Minimization of the costof computations.

In this option, the time stepand the implicit/explicit subzonesareselectedto minimize
the cost of advancingthe solution in time (sayone time unit). The algorithm is based
on the fact that, for an increasedtime step, an increasingnumberof elementsmust be
analyzedwith the (expensive)implicit algorithm. The typical situation is presentedin
Fig. 4.3, which showsfor different time stepsthe relative number of nodesthat must
be treated with the implicit scheme(to preservestability). On the abscissa,the AtFE

denotes the longest time step allowable for the fully explicit scheme (with certain safety

factors). Atyl denotes the shortest time step requiring a fully implicit procedure. The

relative number of implicit nodes increases as a step function from zero for At <_ AtFE

to one for At >__ tFj. Now assume that the ratio r of the computational cost of

processing one implicit node to the cost of processing one explicit node is given. This

ratio can be estimated relatively well by comparing the calculation time of element

matrices and adding, for implicit nodes, a correction for the solution of the system

of equations. Then the reduction of the cost of advancing the solution in time with

the implicit/explicit scheme, as compared to the fully explicit scheme, is given by the

formula:

= AtF__  
At

Typical plots of the function R(At) are presented in Fig. 4.4. Shown here are the two

cases:

(a) the case of a small difference between fully explicit and fully implicit time steps--

an almost uniform mesh

(b) the case of a large difference between fully explicit and fully implicit time steps

Note that in either case, restrictions on the length of the time step should be applied,

for example, from the maximum CFL condition. Otherwise the cheapest procedure

would always be to reach the final time with one implicit step.

From the plots in Fig. 4.4, the following observation can be made: for an essentially

uniform mesh, the mixed implicit/explicit procedure does not provide savings of the
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computational cost---either a fully implicit or fully explicit scheme is the cheapest de-

pending on the time step restriction. On the other hand, for very diverse mesh sizes the

mixed procedure provides considerable savings. This means that the effectiveness of

the mixed implicit/explicit scheme will be the best for large-scale computations with

both very large and very small elements present in the domain. In the practical imple-

mentation of this method, the approximation of the function R(At) is automatically

estimated for a given mesh. Then, the time step corresponding to the smallest R(At)

is selected automatically (subject to additional constraints, in particular the CFLm_

constraint).

In addition to the above criteria, based purely on a stability analysis, some other criteria

for application of implicit schemes can be applied. For example, within boundary layers the

implicit scheme may be preferred, because it provides faster convergence of the boundary

fluxes and offers direct control of the natural boundary conditions. Many of these issues are

yet to be studied.

4.3 Artificial Dissipation

In order to suppress spurious oscillations of the solution, a variety of models of artificial

dissipation are used. In this work, we assume that the artificial dissipation can be introduced

as the additional flux in the Navier-Stokes equations in the form:

it + FC = F y + F_

where the artificial dissipation flux is the function of the solution vector and its derivatives:

F, =

with corresponding Jacobians defined as

oF,
pA __

0u

-
Ouj.

The advantage of this approach is that the artificial dissipation can be treated using.

exactly the same formulation and procedures as for the natural viscosity. In the implicit

algorithm, for the sake of generality, a fourth implicitness parameter 6 is introduced for the

terms associated with the artificial dissipation. In the calculation of the stiffness matrices,

right-hand sides and boundary terms, the same formulas are used as for the natural viscosity.
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Within the aboveframework, variousmodelsof artificial dissipation can be formulated
relatively easily. For example,a straightforward extensionof the original Lapidus dissipation

[26]to multidimensional casesyields artificial fluxesdefinedas

F A = k"u.o (4.23)

with

k ii = ckA_ Ivi,il

where ck is a coefficient (usually between zero and one), Ae is the dement area, and vi are

the components of velocity vector (no summation on i). The Jacobians P and R can be

defined by a straightforward differentiation of formula (4.23).

Another generalization of the Lapidus concept was proposed by Lghner, Morgan, and

Peraire [27]. Within the framework proposed here, the fluxes corresponding to their model

are of the form:

or

where 1 is the normalized gradient of the magnitude of velocity,

I = gradlv[
Ig adlvll

and the coefficient k is calculated from the formula

(4.24)

k = ckAe(l.grad(v, l))

The Jacobians P and R can be defined by differentiation of formula (4.23). If, for simplicity,

dependence of k and l on the solution is disregarded, then:

Pi = 0

(4.25)

P,aj = kliljI

where I is the identity matrix of dimension M. In the incremental equation (4.11), the above

approach leads to an additional term of the form
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which differs slightly from the original formula proposedby LShnerand Morgan (equation
(9) in [27]). These two versions are equivalent only for I constant throughout the domain.

It can be verified, however, that the directional derivative used in [27] is not in divergence

form and thus cannot be directly used in the variational formulation for arbitrary 1.

4.4 Implementation of Boundary Conditions

Before discussion of boundary conditions for the implicit Taylor-Galerkin method, it is use-

ful to quote the general result of Strikwerda [3], which specifies the number of boundary

conditions necessary for well-posedness of the linearized Euler and Navier-Stokes equations.

These results are summarized for two-dimensional problems in the table below.

Type of Euler

Boundary (not regularized) Navier-Stokes

supersonic inflow

subsonic inflow

subsonic outflow

supersonic outflow

no-flow

solid wall

--isothermal

--heat flux

4 ess

3 ess

1 ess

0

1 ess

4 ess

3 ess + 1 nat

1 ess + 2 nat

0 ess + 3 nat

1 ess + 2 nat

3 ess

2 ess + 1 nat

In this table "ess" denotes the essential boundary conditions and "nat" denotes natural

boundary conditions. The essential conditions are to be imposed on the characteristic vari-

ables rather than the conservation variables. It is of importance to note that the numbers

presented in the table are true for problems that are not regularized. If--as is the cae of

virtually all computational techniques--some artificial diffusion is built into the algorithm

or added explicitly, natural boundary conditions should be imosed on these terms even for

Euler problems. Moreover, since artificial diffusion (in contrast to the natural viscosity)

affects all the conservation variables, the number of natural boundary conditions for these

terms should actually be one more than for the (nonregularized) Navier-Stokes equations.

In the jargon of finite difference methods, essential boundary conditions are equivalent to

the boundary conditions to be specified, and the natural boundary conditions are equivalent

to the boundary conditions to be extrapolated from the interior of the computational domain.
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Within the finite elementcontext, the basicideaof implementing these boundary conditions

is based on the concept of constrained minimization. The essential boundary conditions

are treated as constraint functions associated with the variational formulation. Penalty

methods are usually applied to enforce these conditions in the original system and result in

additional stiffness matrices and right hand load vectors. This method has been applied for

implementing the open (inflow/outflow) boundary conditions, no-flow boundary conditions,

and no-slip boundary conditions.

In this section, the numerical implementation of pressure outflow boundary conditions

and porous wall boundary conditions are presented.

Enforcement of Prescribed Pressure

For the case of subsonic outflow with a specified pressure there is one essential boundary

condition to be specified, namely the prescribed pressure. The procedure currently being

applied in this case is the following:

(a) Apply a supersonic outflow procedure to account for corresponding boundary

integrals (continuation from the interior condition).

(b) Impose the one essential boundary condition (pressure) by the penalty method.

The supersonic outflow procedure is described elsewhere and it amounts to rigorous calcu-

lation of boundary integrals resulting from variational formulation.

Beginning with the constitutive relation for the pressure

v = 1)(E, - Ek)= V(E,- Ek) (4.26)

the condition for a prescribed pressure _ is (in incremental form)

Ap = _- p'_ (4.27)
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The correspondingpenalty term (in energyform) is

21 [a; - (; - v")f (4.28)

and in variational formulation is

L[_v - (p- v")]. _(Av)
6

(4.29)

where the test function for pressure is its own variation.

Now observe that Ap can be expressed in terms of conservation variables as:

Op

Ap = -_u zau = d . zau (4.30)

where d = 5{E_ 1} Tp, vl,v_, (in the two-dimensional case).

(4.29) becomes

1 [d. Au -- (p- p'_)] (d. u)
£

Therefore the penalty term

(4.31)

where u is a test function. Using the standard requirement that the variational equation be

satisfied for every v leads to the vector equation:

l[d. _u - (p-p")] d = 0 (4.32)
6
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and after regrouping

}[d®dlAu

penalty stiffness matrix

=
C

right hand side

(4.33)

Note: The first component of d has density in the denominator, so that this approach will

blow up if the density is close to zero. To stabilize this procedure, one can multiply (4.33)

by p2, to get

C
(4.34)

where d =pd = {Ek, rnl, rn2, p}.

Porous Wall Boundary Conditions

Generally speaking, the burning surface of a solid propellant may be regarded as a porous wall

with boundary motion. The burning rate and the mass flow rate across the burning surface

are, theoretically, dependent on the local flow conditions such as pressure and temperature

and the composition of the solid propellant. In order to implement the porous wall boundary

condition with possible boundary motion simultaneously and consistently, a total number

of four quantities are prescribed (see Fig. 4.5). These quantities are the tangential and

normal velocities of the wall (_TW and _Nw), the mass flux across the wall (_'N), and the

temperature of the wall (Tw). The requirement that these prescribed quantities have to

be satisfied at all times on the burning surface results in three boundary conditions to be

imposed.

(a) The tangential velocity of the fluid is equal to the tangential velocity of the wall,

UT -- IZTW

(b) The balance of the net mass flux,

P (UN --_NW) -" mN -- normal momentum
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Figure 4.5: Prescribed quantities on a burning boundary.

(c) The temperature of the fluid is equal to the temperature of the wall,

m

T=Tw

It is important to note that the normal velocity of the fluid is not equal to the normal

velocity of the wall due to the prescribed mass flux. The difference of these two quantities

contributes to the net mass flux across the wall.

The numerical implementation of these boundary conditions results in the modifications

of the stiffness matrices and global right hand side associated with boundary integrals. For

condition (a), the incremental form consistent with the incremental time stepping algorithm

can be expressed as

" (4.35)AUT -" _TW -- ttT

The constraint function associated with this condition is defined by

g = - (nrw - (4.36)

The variational form of the penalty term resulting from the constraint function g (tested

with its own variation _g = 6AuT) is

1_.[AuT -- (_TW -- u_.)] . (_(AUT) (4.37)
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The function g tested with the variation of the incremental tangential velocity, (4.35), will

result in penalty terms affecting both the continuity and momentum equations. To avoid

this unphysical situation, the constraint function, g, may be tested with the variation of the

tangential momentum, that is

1 [A_T -(uTW -- u:_)]. 5AmT (4.38)

where rrtT denotes the tangential component of momentum. Note that

AUT

Arn T

= O_ Au = dAu

amT
= OU Au = _l&u

(4.39)

where

= 7, 7 7,0]

[t - OmT TI, T=, O]
(9u

(4.40)

and (T_, T2) represent the x, y components of the unit tangential vector. Substituting (4.39)

into (4.38), the penalty term becomes

1 [d. Au -(UTW -- u})]d.v (4.41)
g

Since the global variational formulation of the problem (not shown here) has to be satisfied

for any test function v, the corresponding kernel of the penalty term in the stiffness matrix

can be found from (4.41) as

k 1a= ®d (4.42)
e

and the corresponding right hand side is

1
r= -(uTW--U})a (4.43)

C
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The condition (b) to be imposedon the porous wall statesthat

P (UN -- _NW) -- _N

or

mN -- p_NW -- _N

The incremental form of this condition can be written as

(4.44)

AmN -- /NP_NW = _N -- (mnN -- Pn_NW) (4.45)

This results in a constraint function L, given by

L = (,_mN - ap_Nw) - [_ - (m_ - ;_Nw)] = 0 (4.46)

By applying a typical penalty procedure as described for imposing condition (a), we obtain

(L is tested with &nN) the corresponding kernel, k, and the right hand side, r, as

k = 1_® d (4.47)

1
r = -[_g --(m_N -- P'_gNW)] d (4.48)

where

OL

d - OU = [-U_vw, N1, N_, 0]

2_ = OmN_[o, N,, N2 o]
OU

(4.49)

and (N1,N2) denote the x, y components of the outward unit normal vector.

For condition (c), we apply the same penalty procedure to enforce the prescribed tem-

perature. The resulting penalty term is (tested with the variation of total energy)

(4.50)
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The temperature canbe expressedin terms of total energy,Et, and kinetic energy, Ek, as

or

m_mi)2p2 (4.51)

where m_ represents the momentum components. The standard vector d =

derived from (4.51) as

OT
can be

au

OT ( E, Ek )dl = a-7= -7+7

OT _u
d2 = _ = -_ , d3-

Oral p

OT 5v

Om2 p

OT
d4 - - , _ = "7('),- 1)

OEt p

The corresponding kernel and right hand side result from this condition is

k = -d®d
g

¢

where

d = _" -_'_+ p2, p , p ,

= [o,o,o, 1]

5 Moving Grid/Eroding Boundary Algorithms

As mentioned earlier, the surface of the solid propellant is treated as a porous wall charac-

terized by mass injection and boundary motion. The mass injection rate and the speed of

the boundary motion are dependent on the local flow conditions and the composition of the

solid propellant. If combustion phenomena are not considered, these quantities are usually

determined according to empirical data.

36



As combustionphenomenahasnot beenincluded as part of this project, and empirical
approachhasbeenimplementedwherebythe motion/erosionof the solidpropellant boundary
is prescribed.The movinggrid algorithm that incorporatesthe motions into the deformations
of the domain canbe stated as follows:

For a given computational domain, _, but 0_x represent a part of the boundary which

is subjected to a prescribed boundary motion and 0f_2 represent the stationary component,

such that v0g/2 = 0_10 Of_2 (see Fig. 5.1).

Figure 5.1: Computational domain with a moving boundary.

In order to prevent unacceptable mesh distortions near the moving boundary, we have

implemented an algorithm whereby the whole computational mesh is stretched. The grid

velocities u _ for the stretching are calculated by solving a boundary-value problem defined

by the Laplace operator (which has certain smoothing properties):

V2u k=0 inf/, k=1,2

u,_ = _lv on 0_1

U N "-- 0 on 0g/2

where u k represents the k-th component of grid velocity and _'N is a prescribed normal

velocity. Note that only the normal component of velocity is prescribed on the moving

and stationary boundaries. This allows the grid to stretch along the boundary and better

adjust to the erosion process. However, corner nodes belonging to two different boundary

sections have two linearly independent normal vectors and thus two components of velocity

are automatically prescribed. Note that the two equations are coupled due to the specified

normal boundary velocity, _N.

A preconditioned block Jacobi-CG iterative method was employed to solve the final

system of linear equations for grid velocity. Once the grid velocities for each node point

are determined, the new nodal positions are updated by using the time step size and the

calculated grid velocity.

X k = X k + Dt x u k
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Presently, two options for determining the time step size were implemented in:

(a)

(b)

In the first option, the time step size Dt is calculated from from the fluid stability

criteria. Although an accurate transient solution may be obtained, the boundary

motion may be extremely slow due to the small time step size and the relatively

slow motion of the moving boundary. Thus, this version may require extremely

long solution times and high computational costs to move the boundary large

distances.

In the second option, we specify a certain amount of time to advance the moving

boundary without solving the fluid problem. During the boundary motion, the

grid velocities are recalculated periodically to account for changes of the normal

vector n and to prevent mesh distortion. Currently, the criterion for the corre-

sponding time interval Dt is that the mesh can move only a prescribed distance

before recalculation of the grid velocities. This distance is usually taken as a

fraction of the averaged element size.

6 Adaptive Mesh Strategies and Data Management

Schemes

Adaptive methods are an efficient means for improving the accuracy of a computational

solution. In the implementation of such methods, the relative accuracy of a solution is de-

termined by calculating an error indicator for each element in some appropriate norm. Once

an error is determined, adaptive methods are used to change the structure of the approxima-

tion of the problem to reduce the error below a preassigned limit. Changing the structure of

the approximation may involve increasing or decreasing the number of elements (h-methods),

shifting the grid points (r-methods), altering the order of the local finite element approxi-

mation (p-methods), or any of several other techniques.

The h-adaptive scheme incorporated into the solid rocket booster code uses a normalized

error indicator to estimate the relative magnitude of the local element error. This type of

error indicator has proven to have the capability of capturing shock waves with variable

strengths and shock wave interactions. This normalized error indicator is defined as

e, = h,u ,'=1,2
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where he is the measure of the element size and U is the independent variable such as density,

pressure, etc., in the error calculations.

Based on this local error indicator, the h-refinement and unrefinement strategy can be

summarized by the following steps:

An h-Refinement/Unrefinement Method

The h-procedure involves the following steps:

.

.

.

For a given domain D, such as that shown in Fig. 6.1, a coarse finite element mesh

is constructed which contains only a number of elements sufficient to model basic

geometrical features of the flow domain.

As the adaptive process is designed to handle groups of four elements at a time, a finer

starting grid is generated by by a bisection process, indicated in Fig. 6.1b, to obtain

an initial set of element groups.

The numerical solution is calculated on this initial coarse grid, and the error indicators

0_ are computed over all M elements in the grid. Let

0MA x -- max 0e
l<e<M

4. Next, the groups of elements are scanned and the group errors are computed

P

k=l

where ek is an element number in group k and P = 4.

5. Error tolerances are defined by two real numbers, 0 < a, _ < 1. If

0r ___ _0MAX

element e is refined. This is done by bisecting element e into four new subelements.

If

0 Roup <_ 0M,X

group k is unrefined by replacing this group with a single new element with nodes

coincident with the corner nodes of the group.

This general process can be followed for any choice of an error indicator. Moreover, it

can also be implemented with any prescribed frequency.
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Figure 6.1: (a) Refinement and unrefinement of a four--element group, and (b) a coarse initial

mesh consisting of a four-element group.
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Data Structures

An important consideration in all adaptive schemes is the data structure and associated

algorithms needed to handle the changing number of elements, their node locations and

numbers, and the element labels.

As noted in the preceding paragraphs, the algorithm is designed to process (refine or

unrefine) in groups of four elements at each local refinement/unrefinement step. Consider,

for example, the case of an initial mesh of 20 square elements shown in Fig. 6.2. We assign

to each element in this mesh an element number, NEL = 1,2,... ,NELEM and to each global

node a fable NODE. This array, NODES(J,NEL) relates the local number J(J = 1,2,3,4) of

element NEL to the global node number NODES. In addition, the coordinates X j, Yj of

each node are also provided relative to a fixed global coordinate system. These numbers are

filed in two arrays:

NODES(J,NEL) = the array of global node numbers assigned to node J of

element NEL

XCO(JCO,NODE) = the array of JCO -- coordinates of global node NODE(JCO

--- 1 or 2)

Suppose that an error indicator is computed that signals that an element should be

refined, say element 11, in the example. We must have some system for assigning appropriate

labels to the new elements and nodes. Toward this end, a convention has been established

that defines the connectivity of the specified element with its neighbors in the mesh. This

information is provided by a third connectivity array.

Thus, the bookkeeping of element and node numbers evolving in a refinement process is

monitored by the arrays NODES( . ,. ) , XCO(. ,. ) , NELCON( . ,. ), and an array

LEVEL(NEL) which assigns a level number to element NEL. Initially, the same level can

be assigned to all elements, and this level is an arbitrary parameter prescribed in advance

by the user. Thus, provisions are now in hand for an arbitrary dynamic renumbering of

elements and nodes. If, for example, for the mesh in Fig. 6.2 (element 11) is to be refined,

we proceed through the following steps:

1. Loop over the neighbors of element 11 (which is made possible with the NELCON

array), checking the level of the neighboring elements relative to the level of element

11;

2. If any neighboring element has a level lower than element 11, then element 11 cannot

be refined at this stage;

3. If element i1 can be refined (as is the case in Fig. 6.2), generate new element numbers

(thus changing NELEM and new node numbers for unconstrained nodes);

41



X2=Y

5

4

4

3

6

T------

6

15

12

11

3 8

2 7 0

9

1 8 9

1 10 11

X 1

16

13

14

20

_.4

19

8

15 18

9

16 17

20 21

=X

26

27

30

4

7

1 I

Figure 6.2: Mesh, node, and connectivity numbering in a model problem.
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4. Compute the connectivity matrix NELCON for the new elements;

5. Adapt the connectivity matrices for the neighboring elements (since the refinement of

element 11 has now changed this connectivity); and

6. Interpolate the solution for the new nodes.

Consider, as an example, the uniform grid of four elements shown in Fig. 6.3a and

suppose that the error estimators dictate that element A is to be refined. Thus, A is divided

into four elements, I, II, III, IV, as shown, and the solution values at the junction nodes,

shown circled in the figure, are constrained to coincide with the averaged values between

those marked X. Note that the connectivities change in the process, e.g., the connectivities

4 and 8 of element B are different.

Next, assume that an additional refinement is required, and that we must next refine

element III. We impose the restriction that each element side can have no more than two

elements connected to it. Thus, before III can be refined, element B must first be refined, as

indicated in Fig. 6.3b. The constrained node B1 in Fig. 6.3a now becomes active, while node

C1 remains a constrained node. With B bisected, we proceed to refine III into subelements

a, fl, % 6, and new constrained nodes, again circled in Fig. 6.3c, are produced. In this case,

on]y element B had to be refined first in order to refine III, but, in general, the number of

elements that must be refined in order to refine a particular element cannot be specified.

7 Turbulence Modeling

Reynolds-Averaged Navier-Stokes Equations

For most engineering analyses, only the mean motion of a turbulent flow is of interest. The

governing equations of the mean motion of a turbulent flow are usually derived by applying

the Reynolds decomposition technique and an averaging procedure to the Navier-Stokes

equations.

The time-dependent, mass-averaged, full Navier-Stokes equations can be expressed as

Opu_ 0
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where

_i = - _ + --, h is the specific enthalpyaxl

and #_ is the turbulent eddy viscity, Pr and Pr_ are the laminar and turbulent Prandtl

numbers, respectively. These equations are exactly the same as for the laminar case except

as an additional eddy viscosity has been added to the molecular viscosity. The eddy viscosity

may be calculated using a wide range of turbulence models which vary from algebraic models

to k-¢ models. We have selected a simple algebraic model [29] to implement within the

context of the implicit/explicit flow solver described in Section 4.

Algebraic turbulence models, although simple in formulation, are very difficult to imple-

ment if complicated geometries are to be handled. The following sections present details

of the numerical implementation of Prandtl-van Driest inner layer turbulence model in the

context of adaptive unstructured grids.

Prandtl-van Driest Turbulence Model

In the Prandtl-van Driest turbulence model, the turbulent eddy viscosity is calculated ac-

cording to:

gi = p * Iwt * _2

where

and

p = local fluid density

}w I = local magnitude of vorticity

= Prandtl mixing length

£. = kyD

k = 0.4, yon Karman constant

y = distance normal to a solid (no-slip) wall

D = van-Driest damping function

= 1.0-exp(-y+/A)
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and

Vw

_w

26.0, van-Driest constant

wall function = p,,, • v_, y / _,

density on the wall

laminar viscosity on the wall

= viscous wall velocity

= shear stress on the wall

It can be shown that if all flow variables are normalized by some reference quantities, for

instance, aoo for velocity, poo for density, Lc for length, and #oo for the viscosity, the formula

for calculating #_ and v,o will be modified as follows:

I_i = Re,_ p ]w[g2

For the case where a node has multiple length scales, say ML, the Prandtl mixing length

will be calculated by taking the harmonic mean value of these length scales

1?=_--_ , i=I,,,ML

It should be mentioned that for structured grids used in finite difference methods, the data

structures applied for indicating a wall are essentially built up by the grid indices with

appropriate flags, for instance, I = 1, or, I = IMAX; J = 1, or J = JMAX. This simple

data structure, together with an ad hoc assumption that the grid system is orthogonal,

allows the calculation of the length scales associated with a grid point (or node) to be made

relatively easy.

In finite element methods, the calculations of p and [w[ is straightforward within an

element. However, the calculation of Prandtl mixing length is very difficult, especially for

adaptive unstructured grids, due to its strong dependence on the boundaries. This geometry

depenence makes the calculation of length scales for a node very expensive. One reasonable

method to reduce this dependence and to increase the computational efficiency is to build

up a data structure that can be readily used to calculate the length scales for a given point.

By having the data structure built up, the calculation of the Prandtl mixing length can be

performed in a manner that is consistent with p and [w[ in an efficient manner.

Requirements in Designing a Data Structure for Implementing an

Inner Layer Turbulence Model

In designing a data structure there are several requirements which should be kept in mind:
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1. Efficient (ready to use)

Oncethe data structure is built up, the length scalesfor a given point (nodal points
or integration points) shouldbe readily decodedfrom the data structure.

2. Economic(minimum storage)

The storageshould be kept at a minimum and be flexible (dynamic allocation).

3. Geometry independent(complexgeometry)

The data structure should be designedsuch that it is independent of the complexity
of the geometry.

4. Modularized (easyto couplewith variousflow algorithms)

The data structure should be designedsuch that it could be easily coupled with any
flow algorithms.

5. Extendable, reusable(ready to be usedwith a two-equation model)

The data structure shouldbe designedsuchthat it can be usedwith other turbulence
models in which length scale is one of the key parametersfor calculating turbulent
eddy viscosity.

6. General (multiple length scales)

The data structure should be designedso that it allows for variable length scalesfor
eachnode.

7. Grid-structure dependent

The data structure shouldbedependenton the global grid structure only. This implies
that the data structure shouldbe rebuilt only when the global grid structure hasbeen
changed,for instance, after a grid adaptation.

8. Readable

The arrays used in the data structure should be easy to read for engineersand the
designer.

9. Integrity, compactness,etc.
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Criteria in Building Up the Data Structure

It is important to set up geometrical criterion in building up the data structure for imple-

menting the inner layer turbulence model. Without using these criteria, erroneous length

scales and eddy viscosities may be determined. Presently, the following criteria are used.

• A length scale for a node is a valid projection and/or the minimum distance to the

viscous boundary (Fig. 7.1).

• A valid length scale should not break the boundary of the computational domain (Fig.

7.2).

• The maximum allowable number of length scales per node is limited to four (4).

• Each node has at least one length scale associated with a viscous boundary (Fig. 7.3).

• If no valid projection can be found, the minimum distance to a wall will be taken as

the length scale associated with a viscous boundary.

• Length scales for each node are selected from all potential length scales that satisfy

the above criteria starting from the minimum value.

Design of a Data Structure for Implementing an Inner Layer

Model

With the above functional specifications and criteria in mind, we have designed a data

structure for efficiently implementing an inner layer turbulence model.

The first set of data is utilized to store information about the no-slip boundaries and the

solutions on these boundaries. All the viscous boundaries are stored in a discrete form, that

is, a boundary is composed by many line segments (this is true because bilinear elements are

used in our finite element code). Each line segment will be referred to as a viscous panel.

Each viscous panel can be identified by four integers, the element number it belongs to, the

side number, and the node numbers (with respect to total number of viscous nodes) of its

two end points. The reason for storing the node numbers of the end points for each viscous

panel is that they could be readily used for calculating the wall function (y+) for each interior

node by using interpolation.

The second set of data is utilized to store information that can be readily used to cal-

culate the Prandtl mixing length for each node during the solution procedure. This set of

data consists of a pointer, the number of length scales, and the values of the length scales
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associated with a node. For each length scale, the associated viscous panel number and the

local coordinate of the projection are also stored. A pointer array was designed to take care

of variable length scales, to efficiently allocate the storage and to direct access to the data

to be used to calculate the length scale.

Details of the data structure are described as follows:

COMMON /TURBZR/

COMMON /TURBZI/

RHOWALL(2,MXBCD),TAUWALL(2*MXBCD),

CMUWALL(2,MXBCD),RTZDAT(2,2*MAXND),

TLENX(MAXND)

NVISPAN,NVISNOD,NODVPAN(4,2*MXBCD),

NMVISP(MAXND),ITZDAT(2*MAXND),

ITZPTR(MAXND)

DEFINITIONS OF ARRAYS

New Flow Property:

TLENX : TURBULENT LENGTH SCALE FOR EACH NODE

Wall Variables:

RHOWALL

TAUWALL

CMUWALL

: DENSITY FOR EACH NODE ON VISCOUS BOUNDARY

: WALL SHEAR STRESS FOR EACH NODE ON VISCOUS BOUNDARY

: LAMINAR VISCOSITY FOR EACH NODE ON VISCOUS BOUNDARY

Global Arrays:

NMVISP

ITZPTR

RTZDAT

ITZDAT

: NUMBER OF VISCOUS PANELS ASSOCIATED WITH A NODE

(NUMBER OF LENGTH SCALES FOR A NODE),

: THE POINTER FOR EACH NODE (IN ARRAYS RTZDAT AND ITZDAT)

: VALUE OF Y-NORMAL AND LOCAL PARAMETRIC COORDINATES

ON A VISCOUS PANEL FOR EACH NODE,

: LIST OF VISCOUS PANELS ASSOCIATED WITH A NODE
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Information About the Viscous Panel:

NVISPAN :

NVISNOD :

NODVPAN :

TOTAL NUMBER OF VISCOUS PANELS = NUMELD+NUMELE

TOTAL NUMBER OF VISCOUS NODES = NUMBCD+NUMBCE

INFORMATION TO BE DECODED TO IDENTIFY THE NODES ON

EACH VISCOUS PANEL,

I : ELEMENT NUMBER, 2 : SIDE NUMBER

3 : FIRST NODE NUMBER, 4 : SECOND NODE NUMBER

Summary of Storage:

1. A number of 7*MAXND words are required for storing information associated with

the length scales for each node (assume averaged two length scales for each node).

2. A number of 3*MXVISP words are required for storing solutions on the solid (no-slip)

walls for efficiently interpolating solutions.

Technical Comments

For a grid system with MAXND=2500, it requires 140 kbytes of storage (assuming an average

of two length scales for each node). This storage requirement is comparable to the storage

required by the data structure designed by P. Rostand [30]: 90 kbytes for the same grid

size and a "single" length scale for each node. However, it must be noted that Rostand's

data structure was designed for implementing both an inner layer and outer layer turbulence

model and for simple geometries only (convex geometry was assumed). In addition, after a

closer examination, one finds that there are some hidden storage requirements in Rostand's

calculations (for instance, solutions on the normals to be used for interpolation) not taken

into account. This needed data requires additional storage and extra computational time if

Rostand's data structure were to be generalized to handle more complicated geometries. We

estimate that an additional 140 kbytes of storage may be required for our data structures if

the outer layer turbulence model is to be implemented.

Numerical Implementation

The major tasks involved in the numerical implementation of the inner layer turbulence

model are basically composed of two parts: 1) how to build up the data structure, and

2) how to use the data structure to calculate the eddy viscosity. Flowchart I (Fig. 7.4)

shows how the data structure is constructed in a step-by-step fashion. Flowchart 2 (Fig.

7.5) presents a global view of how the inner layer turbulence model can be coupled with

other flow algorithms with just a few extra subroutine calls. Once the data structure is built
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Figure 7.4: Flowchart for constructing the data structures for inner layer turbulence model.

52



Flow Chart for Implementing Inner Layer Turbulence Model
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Figure 7.5: Flowchart for implementing inner layer turbulence model.
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up, the calculation of the eddy viscosity for a given point (usually the integration point) is

straightforward within the flow solver.

8 Numerical Examples

8.1 Supersonic Nozzle With Small Throat Radius of Curvature

h 45°-15 ° convergent/divergent conical nozzle was used in this test case (see reference [31]

for detailed nozzle specifications). This geometry is characterized by its rapid contraction in

the convergent part, sharp wall curvature at the nozzle throat and near parallel at the nozzle

exit. The experimental work for this type of nozzle flow has been performed by Cuffel, et al.

[32] and numerical results have been reported by Serra [31].

An initial grid of 61 x 21 nodes was used to solve this problem. Flow was initialized by

using the analytic solution concluded from a quasi-one-dimensional isentropic flow [33]. The

nozzle was assumed to connect to a reservoir such that the flow condition at the nozzle inlet

could be treated as a uniform subsonic inflow. This inlet flow condition remained constant

during the solution process. At the nozzle exit, a supersonic outflow condition was specified.

After 400 time steps (with a minimum cost option and CFLBOUND -- 5.0), the flow pattern

was well developed in the nozzle. The adaptive package was then switched on and the grid

was adapted (every ten steps to the first level) for another 200 time steps with c_ = 0.50,

/3 - 0.70. For the next 100 time steps, the grid was adapted every 10 time steps to the

second level with (_ = 0.40, /3 = 0.60. Finally, the grid was adapted to the third level for

another 100 time steps. The final adapted grid consists of 3930 elements and 3750 nodes.

As evidenced by the adapted grid shown in Fig. 8.1a, the grid is automatically refined

and is well aligned with the shock pattern in the divergent part of the nozzle. This pattern is

best illustrated by the Mach number contours, as shown in Fig. 8.2c. An oblique shock was

triggered by a junction between the circular circular-arc throat and the divergent section.

This oblique shock hit the nozzle centerline and reflected back into the flow domain. The

streamline distribution over the entire nozzle passage is shown in Fig. 8.1b. The rapid

expansion of the flow in the region close to the nozzle throat can be seen from a closeup view

of the Mach contours in Fig. 8.2d. The comparisons of experimental data [32], numerical

results from Serra [31], and our prediction for the Mach number distribution along the nozzle

centerline and the nozzle wall are presented in Fig. 8.3.
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Figure 8.3: Comparison of Mach number distribution for a 45°-15 ° conical nozzle.
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8.2 Viscous Flow Over a Sphere

Flow over a spherehas been a popular benchmarkproblem for validating CFD codesdue
to the facts that the fluid physicsfor this problem is well understood [34] and that many
numerical resultsare available for comparison[34,35]. The flow conditions selected for this

case are M = 0.1 and Re = 100.0. The computational domain was first discretized by using

a mixed structured/unstructured grid. After the flowfield developed to a certain stage, the

grid was then adapted to the first level in the region close to the solid boundary and in

the separation region. The surface of the sphere was treated as a no-slip isothermal wall.

The axis of symmetry was treated as a no-flow or no-penetration boundary. Characteristic

boundary conditions were imposed on the rest of the artificial boundaries. No artificial

dissipation was added for this test case.

Figure 8.4a shows the adapted grid which consists of 2457 elements and 2535 nodes.

The recirculation region on the lee-side of the sphere can be seen clearly from the velocity

vector plot, as shown in Fig. 8.4d. From the streamline plot shown in Fig. 8.4c, it can

be observed that the flow separates at an approximate angle of 123 ° (measured from the

leading edge stagnation point) and that the dividing streamline extends into the wake region

with the distance s/D = 0.8. The vorticity distribution and pressure distribution along

the surface of the sphere (as shown in Fig. 8.5) agree extremely well with the data from

[34,35]. It should be mentioned that, in the solid rocket booster code, the reference velocity

used to nondimensionalize the Navier-Stokes equations is the speed of sound at farfield. The

characteristic length is based on the diameter of the sphere. Therefore, the vorticity and

the pressure coefficient calculated by the code must be rescaled according to the following

formulae:

1. for the vorticity
WA

2M_

where _-'A is obtained from the code and w is the normalized vorticity using freestream

velocity.

2. for the pressure coefficient

=1 = =_ Pa-
-_p_u¢_ M_

where PA is obtained from the ADAPT2D TM code.
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Figure 8.5: Flow over a sphere, M = 0.1, Re = 100. (a) vorticity distribution on the sphere

surface, and (b) pressure distribution on the sphere surface.
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8.3 Simulation of Vortex Shedding Due to Motor Inhibitor

The purpose of this test caseis to verify the axisymmetric capability of the code. The
problem of vortex sheddingdue to a motor inhibitor protruding from the wall to the port
flowfield studied by Majumdar, et al. [36] will be utilized as the benchmark problem.

Due to the nature of axisymmetry, an axial/radial section of the SRM was taken as the

computational domain. For the sake of fair comparison, the initial mesh size used for solving

this problem is exactly the same as it was used in [36]. The flow conditions employed in the

simulation are M = 0.09897, Re = 105. No artificial dissipation was added for this case.

Flow was initialized by using one-seventh power law velocity distribution. This type of

velocity distribution was also used to specify the inflow condition. At the outflow, a pressure

boundary condition was imposed.

The grid was adapted to the first level during the solution process. The final grid consists

of 722 elements and 772 nodes. As seen in Fig. 8.6a, grids were automatically refined along

the no-slip boundary to resolve the viscous boundary layer. Strong circulation due to the

inhibitor can be seen clearly from the velocity vector plot shown in Fig. 8.6b. The streamline

plot indicates a large separation region formed in the lee-side of the inhibitor. The pressure

distribution is displayed in Fig. 8.7a. These results qualitatively agree well with the results

obtained by Majumdar, et al. [36] as exhibited in Fig. 8.8.

8.4 Internal Flow in the Turnaround Duct of Space Shuttle Main

Engine

Due to the highly restricted space, the most important design specifications for the Space

Shuttle Main Engine (SSME) are minimal weight and size. This requirement results in

the complicated design of engine components which are usually combined with structural

and geometrical complexities. A typical example is the 180 ° bend turnaround duct (TAD).

The strong curvature of flow passage in the TAD will cause high levels of turbulence, flow

unsteadiness and flow separation, etc. The ability to model turbulent flows is therefore im-

portant for any CFD code in order to predict internal flow in the turnaround duct. However,

as pointed out by Monson, et al. [29], turbulence closure models have been developed and

optimized for external flows. The type of model needed and its importance for internal flows

with strong curvature still remains to be established. The purpose of this test case is to

verify the accuracy of the simple algebraic turbulence model that has been implemented

within the code.

Specification of the computational domain is given in [29]. Two test cases with Re = 105

and Re = 106 have been performed. The initial grids for both cases are shown in Fig. 8.9.

Flow was initialized by using the one-seventh power law velocity distribution [37]. The
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Figure 8.7: Simulation of vortex shedding due to motor inhibitor. (a) pressure contours, and

(b) streamlines.
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maximum Mach number in this velocity profile is M = 0.1. This amounts to an averaged

uniform flow at the inlet with M = 0.0875. This velocity is used to normalize the longitudinal

velocity distribution. At the inlet of the TAD, the boundary condition was specified by using

the one-seventh power law velocity distribution. The pressure outflow boundary condition

was imposed at the exit of TAD. A fully implicit scheme was used to solve this problem. To

let the flow develop smoothly, the CFL number was gradually increased from 1.0 to 50.0.

After 400 time steps, the grid was adapted to the first level in the regions where active

flow events are likely to occur, see Figs. 8.10, 8.11. The specified convergence tolerance

was aligned within 600 time steps (the convergence tolerance is in the order of 10-6). The

pressure contours, vorticity contours, velocity distribution and streamlines are shown in Figs.

8.12, 8.13. The results shown here agree qualitatively very well with the numerical results

predicted by Chen by using an extended k-e model as shown in Fig. 8.14. It is interesting to

note that in the case of Re = l0 s, a small secondary separation bubble was predicted by our

code, which is consistent with the observation in the experiment performed by Sandborn (as

shown in Fig. 8.15). The comparisons with the data predicted by other CFD codes [29] for

the longitudinal velocity distributions at several axial locations are shown in Figs. 8.16-8.9.1.

Good agreement can be observed for those locations far away from the separation bubble

while some discrepancy can be seen in the regions close to the separation bubble. Further

numerical studies are required to investigate this difference.

8.5 Porous Cylinder with Nozzle (Planar Case)

The internal flow in a nozzle is usually driven by the mass injection from the surface of

the solid propellant and the positive pressure gradient between the rocket chamber and the

environment. The purpose of this test case is to apply the porous wall boundary condi-

tion and the pressure outflow boundary condition for simulating the internal flowfield in a

cylindrical-port cold-flow model. This cylindrical-port model is connected to a nozzle which

was constructed using piecewise analytic functions. This type of problem has been studied

by Sabnis, et al. [38] and will be resolved here.

The initial grid consists of 50 x 20 elements in the cylindrical part and 30 x 20 elements

in the nozzle section. The flow conditions employed for this case are the mass injection

rate = 0.0018 and Reynolds number = 8.0 x l0 s. No artificial dissipation was added and

laminar flow was assumed. Flow was initialized as a quiescent condition over the entire

computational domain. The head end of the cylinder and nozzle wall were treated as a

no-slip isothermal boundary. The axis of the cylinder was treated as a no-flow boundary. In

order to drive the flow in the nozzle smoothly, the pressure at the outflow boundary was first

set to a value slightly below its corresponding quasi-one-dimensional isentropic pressure.

During the solution process, this value was gradually decreased until supersonic flow was
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Figure 8.10: Adapted grid, Re = 105.
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Figure 8.11: Adapted grid, Re = 106.
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Figure 8.12: Internal flow in the TAD, Re = l0 s. (a) velocity distribution, (b) streamlines,

(c) pressure contours, and (d) vorticity contours.
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Figure 8.13: Internal flow in the TAD, Re = 10 6. a) velocity distribution, (b) streamlines,

(c) pressure contours, and (d) vorticity contours.
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Figure 8.16: Normalized longitudinal velocity distribution at 0 = 0.0 deg.
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Figure 8.17: Normalized longitudinal velocity distribution at 0 = 90.0 deg.

74



LEGENO
o RE=IOI.5

o RE:IOmH6

RORPT,RE=E5

o RORPT,RE=E6

I

{R-R[I} }/tRZ-Ril}}

LOGITUDINAL VELOCITY DISTRIBUTION

AT THETA = 180.0

Figure 8.18: Normalized longitudinal velocity distribution at 8 = 180.0 deg.
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developed at the outflow. Once the flow becomes supersonic at the nozzle exit, the pressure

outflow boundary condition was turned off. A method that is similar to the extrapolation

boundary condition procedure used by the finite difference community is then imposed on the

supersonic outflow boundary. Due to the nature of the subsonic flow within the cylindrical

port field, the pressure disturbance will be propagated from the nozzle section upstream

toward the head end and reflected back and forth within the chamber. After 1000 fully

implicit time steps, this type of disturbance still can be observed in the numerical solution.

The numerical solutions presented here were obtained after 2000 time steps.

Figure 8.22 shows the grid and a plot of the streamlines. It can be seen clearly that

the internal flow was driven by the mass injection from the surface of the cylinder. The

comparisons of the normalized axial velocity distribution at several axial locations are shown

in Figs. 8.23-8.26. Very good agreement between our code, MINT and experimental data

are evident.

The adaptive package was activated after 200 time steps and the grid was refined to the

first level. The resulting mesh contained 2560 elements and 2594 nodes as shown in Fig.

8.27. As can be seen from Fig. 8.27a, refinement is clustered in the near wall region in the

divergent section of the nozzle to resolve the viscous boundary layer. The viscous boundary

layer grows rapidly and significantly reduces the effective cross section area in the divergent

part as shown in Fig. 8.27b.

8.6 Porous Cylinder with Nozzle (Axisymmetric Case)

To test the axisymmetric option in conjunction with a porous boundary condition, the

previous test case was resolved with the grid size and all flow conditions, boundary conditions,

and time stepping procedures exactly the same as those used in test case 8.5.

Very similar numerical results were obtained as compared with the previous test case.

Figure 8.28 shows the initial grid and the streamline. It can clearly be seen that the internal

flow was driven by the mass injection from the surface of the cylinder. The pressure contours

shown in Fig. 8.29 indicates that in the nozzle chamber the pressure is nearly constant and

the pressure changes rapidly in the vicinity of the nozzle throat due to a fast flow expansion.

Figure 8.30 shows the velocity distribution in the nozzle section. A relatively thin boundary

layer extended from the nozzle wall can be observed. After the internal flow was developed to

a certain stage, we turned on the adaptive options with the maximum level of grid refinement

limited to the first level. The grid was adapted in the region close to the viscous boundary

to resolve the rapid change of flow velocity as shown in Fig. 8.31.
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Figure 8.23: Normalized axial velocity distribution at Z/D = 4.22.
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Figure 8.25: Normalized axial velocity distribution at Z/D = 9.06.
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Figure 8.27: Closeup view of (a) adapted grid, and (b) velocity profiles in the nozzle section.
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Figure 8.31: Adapted grid and velocity distribution in the nozzle section.
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8.7 Slotted Chamber with Nozzle (Axisymmetric Case)

The purpose of this test case is to validate the axisymmetric modeling capability for simu-

lating internal nozzle flows with mass injection. In addition, an algebraic turbulence model

was applied. The nozzle geometry was constructed using piecewise analytic functions. The

inhibitor was treated as a radial slot and attached to the cylinder (see [39] for detailed

geometry specifications).

The initial grid consists of 70 x 20 elements in the combustion chamber region and 30 x 20

elements in the nozzle section. The flow conditions employed includes the normalized mass

injection rate = 0.0027 and Reynolds number = 8.0 x 10 s. The mass injection rate is

held constant for all porous boundaries. The initial condition and the rest of the boundary

conditions are exactly the same as the previous test case. The surfaces of the inhibitor are

treated as porous boundaries. The numerical solutions presented here were obtained after

4000 time steps. Figure 8.32 shows the grid an streamline plots. It can be seen that

the internal flow was driven by the mass injection from the surface of the cylinder. A global

velocity vector plot and details of the flowfield around the aft-end of the slot are displayed in

Fig. 8.33a. The high speed flow injected from the slot to the chamber caused a reversed flow

in the vicinity of the joint of the slot and the cylinder, see Fig. 8.33b. Chamber pressure

is nearly constant and varies rapidly in the nozzle section as shown in Fig. 8.33c. The

closed-up view of the velocity vector plots in the nozzle section and Mach number contours

are shown in Fig. 8.34. These figures confirm that the large contraction of the convergent

part leads to a rapid flow expansion.

The comparisons of the normalized axial velocity distribution at several axial locations are

shown in Figs. 8.35-8.43. Generally speaking, the velocity boundary layers at all locations

predicted by our code are much thinner. This discrepancy may be caused by many reasons

such as the grid resolution, distribution of the mass injection rate, the use of appropriate

turbulence models, and flow unsteadiness, etc. Further numerical studies are necessary to

explain these differences.

After 4000 time steps, the grid was adapted to the first level. The final grid consists

of 2315 elements and 2437 nodes. As expected, most of the adaptation occurred along the

solid wall of the divergent part of the nozzle as shown in Fig. 8.44a. A very thin velocity

boundary layer can be observed in Fig. 8.44b.

8.8 Moving Grid Algorithm

To test the moving grid algorithm, a 45°-15 ° convergent-divergent nozzle [31], with an

extended cylindrical part for modeling the solid propellant section, was used. As mentioned

in Section 5, if the grid motion is coupled with the fluids problem, the boundary motion could
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Figure 8.33: Slotted chamber with a nozzle. (a) velocity vectors, (b) velocity vectors in the

vicinity of the slot, and (c) pressure contours.
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be extremely slow and is not suitable for large boundary motions. Therefore, the moving
grid algorithm, Option 2, wasused. The initial grid is shownin Fig. 8.45. After 1.5 time
units of advancement,the grid distribution is shownin Fig. 8.46. It should be noted that
the Laplacianoperator that governsthe grid motion is a smoothingoperator and, therefore,
the grid motion doesnot affect the quality of the initial grid ascan beseenfrom Fig. 8.46.

9 Future Extensions

The success of the two-dimensional and axisymmetric analysis package in modeling various

benchmark problems as demonstrated in Section 8 suggests that extensions of current sim-

ulation capability to realistic three-dimensional flows in cavities with eroding boundaries is

feasible. In this section, we will briefly describe some possible extensions of this project with

respect to the enhancement of the two-dimensional code and for the development of a fully

three-dimensional capability for use in the design and analysis of solid rocket motors.

Two-Dimensional Enhancements

The two-dimensional code has numerous special capabilities for modeling subsonic to super-

sonic flow regions. To enhance these current capabilities the following options are proposed,

.

2.

.

.

Develop a menu driven, x-window-based interactive preprocessor and postprocessor.

Develop a user-friendly two-dimensional structured/unstructured mesh generation

package.

Optimize (vectorize/parallelize) the implicit/explicit solution module to provide peak

performance on the MSFC Convex and/or Cray computers.

Enhance the moving boundary algorithm to include a physically based regression ve-

locity which is a function of the flow characteristics such as pressure and temperature.

5. Implementation of higher-order turbulence models such as a k-g or k-e model.

Three-Dimensional Code

Many of the configurations used in solid rocket motors are three--dimensional in nature due

to the shape of the combustion chamber. Thus a three-dimensional analysis capability which

extends the two-dimensional/axisymmetric capabilities would clearly be of great interest and

benefit. The following steps outline the development of a three--dimensional Navier-Stokes

solid rocket motor code:
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1. Develop three-dimensional discrete models of the Navier-Stokesequations for com-
pressibleflow in domains with boundariesunergoingarbitrary motions, particularly
with burning or recedingsurfaceswherethe burning rate is determined by local flow
physics.

2. Developa three-dimensional meshgenerationpackagefor moving boundary simula-
tions.

3. Developa grid visualization packagefor viewing moving grids in three dimensions.

4. Develop a complete three-dimensionalanisotropic h-adaptive package including the

data structure, refinement/unrefinement package, and directional error estimates.

5. Extend the current two-dimensional burning boundary algorithm to three dimensions.

6. Assemble the functional packages developed in Tasks 1 to 5 into user-friendly three-

dimensional analysis and design package for modeling solid rocket motors.

7. Develop a set of code validation problems to be supported by experimental results

supplied by MSFC (if available).

8. Develop complete user documentation.
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Appendices

A Jacobians Due to Source Terms

Four groups of additional Jacobian matrices are required in the axisymmetric formulation.

1. Jacobian matrix due to inviscid source term, B, is defined as

"_ = 0$c
OfL

1
-- -S

Y

B =

0 0 0 0

0 0 0 0

-q2/2 u v -1

0 0 0 0

where

_=7-1 , q_=u_+v _

and 7 is the ratio of specific heats.

2. Jacobian matrix due to viscous source terms, T, is defined as

_'= OSv_O_= -ylT= l (Tz + _ T2)-y

where

T 1 =

0 0 0

0 0 0

A Opu 2Apu Op

+

p2

Op A Op

102 Oy pa Oy p20x p20y

0 0 0

0

0

0

0
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T2 --

0 0 0 0

0 0 0 0

2#pv 0 -2..._.._ 0

p2 p

0 0 0 0

3. Jacobian matrices due to viscous source terms, Q, are defined as

Q1 - o_,1 y

0 0 0 0

0 0 00

Apu -A
00°

p2 p

0 0 00

c9S '_ 1
- -Q2

0_,= y

Q2 --"

0 0 0 0

0 0 0 0

Apv --A

-70 _ Op

0 0 0 0
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4. The viscous Jacobians, pi = --_u' are defined as

0 0 0

p1 c3F_
Ou

0

PA PT_PT_o

P:7,PT_P_

where the matrix components of p1 are given by

0

= -fi --#Rml,1 -- Am2, 2 -[- Z#R---- _ + 2A

_R

p2 P,1

,_ Op

p_ ay

P311 - p2 -m2,1 - ml,2 + 2ml p''_2p+ 2m2 p'Ip+

P_3 #
= --'_P,1

PA = _PA= _<PA+ vPA--
1

p2 (ml'rll -[- m2T21)

+ p2cv

k
(-ml,_ + 2ulp,_)_ _,_+ _P_+ _P_+ p_---_P

k

p P2C,,

k

p2 c_ P,1
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Setting i = 2 in the definition above for the viscous Jacobians gives:

p_ a_
Ou

0 0 0 0

P#,P#_P#_O

P_, P_2 P_s P_4

where the matrix components are defined by

P_ = PL

P]_ p2 -unto,2 + 2#nu2p,_ + 2

A

P_2 - pi P,i

#n 2#P_-
p2 P,2 P_]

P:I 7"Tll Frl2= .... _'2_+ _,P_, + u_P_
p_ Ti2 P

+ p2c----_

1 k

y p2c,,

p]_ rl_ + ul P_2+ u2P_ + _ -ml,2 + 2ulp,2 +
p p_c_

k 1 k

p2 c, ' P,2 y pc,,
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B Methods for Treating Constrained or Hanging
Nodes

Suppose that one is interested in performing element calculations for the element NEL shown

shaded in Fig. B.1. The solution within this element can be expressed as

U _ --

4

E UNODES(I,NEL) qI

I=1 (B.1)

"- Ul_I/1 _- U2kI/2 "Jc U393 "9c U4_4

where 9i is the local shape function associated with node I, and ui is the solution vector at

node I. However, notice that nodes 1 and 3 are hanging nodes and the numerical solution

at these two nodes are constrained by

u4 + u9

Ul ---_ 2

u4 + Us

U 3 =

(B.2)

Substituting (B.2) into (B.1), we have

ue = u4 + u9 _1+ u2_ + k_3 + u4_4
2 2

(B.3)

Rearranging terms, we obtain

= ug-_- + u29_ + Us-_- + u4 + -_- + 94 (B.4)
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8

6

Figure B.I: Elementsconsistingof constrainednodes.

By defining new shapefunctions, _, as

--'- m

2

_3
-7-

(B.5)

and defining (ug, u2, us, u4) as the physical degrees of freedom associated with this element,

then the solution vector within NEL can be interpreted as

4

u _ = _ UNODES(I,NEL)_'I (B.6)
I=1

where

NODES(1,NEL) = 9 , NODES(2,NEL) = 2
NODES(3,NEL) = 8 , NODES(4,NEL) = 4

and _ are the modified shape function defined by (B.5). The method being applied to

handle the constraint nodes for the Cartesian problems is based on equations (B.5) and

(B.6). That is, one modifies the data structure such that element NEL was defined by the
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physical degrees of freedom (nodes 9, 2, 8, 4) rather than its original geometrical degrees of

freedom (nodes 1, 2, 3, 4). The local shape functions for these physical degrees of freedom

have to be consistently modified according to equation (B.5).

In the axisymmetric case, the conservation variable _ = yu was interpolated separately

for y and u. It is important to note that y is a purely geometrical quantity. The use of the

modified shape functions to interpolate y within an element will cause a severe inconsistency

Therefore, y should be interpolated by using the originalfor the conservation variable _.

element shape function, that is
4

y_= _y, kg, (B.7)
i=1

Thus, equations (B.5), (B.6), and (B.7) completely define the method for treating the con-

strained nodes for the axisymmetric problem.

C Projection of Surface Nodes

The basic idea behind an adaptive methodology is that during the solution process, the grid

is automatically refined and/or unrefined according to certain error criteria. These criteria

are developed such that when the solution process is repeated using an updated grid the

accuracy of the solution is improved.

Due to the refinement and unrefinement of the grid, many new nodes and elements

are generated and some existing nodes are eliminated. This in general does not cause any

difficulties if the new nodes are generated interior to the domain but may lead to problems if

the nodes are adjacent to a prescribed boundary and no precautions are taken to ensure that

the new grid points lie on the given surface. Obviously, it is necessary that as the refinement

continues the resolution of the profile of the object must be improved as well as the accuracy

of the solution. Without a precise interpolation or projection, these new nodes generated on

the prescribed boundaries during the adaptive procedures can destroy the accuracy of the

original geometrical representeation of a two-dimensional object and thus the solution.

If the surface of a two-dimensional object can be expressed by a few simple algebraic

equations, an accurate interpolation or projection is easy to perform. Unfortunately, for

most realistic problems the surfaces of a two--dimensional object are usually defined by a

finite number of discrete points rather than a set of continuous algebraic functions. Thus

we are faced with the problem, how does one accurately and efficiently project nodal points

onto the surface of the two-dimensional object defined by a finite number of discrete points.

One popular method used by the CAD/CAM industry [40] which we will also employ is

described below.
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The Parametric Cubic (PC) Curve in Space

The algebraic form of a PC space curve can be expressed as

3

_(_) = E .,u' (c.1)
i=O

where r = (x, y, z) T, u is the parameter that characterizes the curve and we assume it varies

from 0 to 1, and a, are the constant coefficients.

Suppose that the end conditions r are given, that is

or in matrix notation

,'(o)=_o }
r(1) = ao + al + a2 + a3

r'(O) = ,_1
r'(1) = 3a3 + 2a_ + a]

(c.2)

r(0)

r'(1)

0

1

0

3

001

111

010

210

a3

a2

al

ao

(C.3)

Solving (C.3) for ai yields

where

[a31it,o,lr,1,a2 = (M) r'(O)al

ao r'(1)

(c.4)

M

2 -2 1 1

-3 3 -2 -1

0 0 1 0

1 0 0 0

(c.5)

Substituting (C.4) into (C.1) and rearranging, we obtain the geometric form of r

T('/_) --" ll-(O)bl (u) -_- 1"(1 )52(11 ) --{-"pt(O)b3(12) 31- 7"(1)54(11 ) (c.6)
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where

bl(u) = 2u 3- 3u_ + l ]
b2(u) = -2u z + 3u_
b3(u) = u 3 - 2u 2 + u
b4(u)= _3 _ _2

(C.7)

are the so-called blending functions. In matrix notation, equation (C.6) can be written as

,(o)

_'(o)
r'(1)

(c.s)

Replacing v by x, y, and z in (C.8), the full representation of a PC space curve becomes

Ix(u) ]y(u) = [u 3 u2u 1] (M)

z(_)

x(0) y(0) z(0)
x(1) y(1) z(1)
x'(0) y'(0) z'(0)
x'(1) y'(1) z'(1)

(C.9)

Note that the PC plane curve is the special case of (C.9) by neglecting the z-coordinate.

Segmenting a PC Curve

In most practical engineering applications, PC curves are usually defined in a piecewise

manner. Assuming that the end values of a segmented PC curve are given by ul and u2,

then the geometric coefficients of the segmented curve in terms of the given curve are modified

as

n(o)
R(1)
R'(o)
R'(1)

_(_)
_(_) (c._o)

where Au = us - ul and R denotes the x, y, and z coordinates for the segmented PC curve.

Projection of Surface Nodes

Usually, the arc length coordinate is commonly used as the parameter that characterizes a

PC curve. This implies that those points to be supplied to construct a PC curve have been

pre-sorted in certain order such that every point on the curve can be assigned a unique arc

length coordinate. The element connectivity array as explained in Section 6 can be used to
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identify if a node lies on the prescribed surface. For a point to be projected onto a PC curve,

the method we applied is first to find the closest segment in the PC curve to the point. Once

this segment was identified, the projection of the surface node is equivalent to the following

statement:

For a given point with Cartesian coordinate r = (x,y), find its arc length coordinate, s,

and associated Cartesian coordinate r(s) such that

d -- lit(s) - rll (c.11)

is a minimum, where

r(s2)
Asr(sl)

Asr(s2)

(C.12)

As = s2 - sl (C.13)

and M is given by equation (C.5).

Obviously, to minimize d is equivalent to find the zero--root of a fifth order polynomial

f(s) defined as

f(s) = [r(s) - r]. r'(s) (C.14)

Newton-Ralphson's iterative method may be applied to determine its zero-root as follows:

1. Use s = 0.5(sl + s2) as an initial guess.

2. Calculate f(s) and if(s), where if(s) = [r(s) - r]. r"(s) + r'(s)- r'(s)

3. Calculate 5 = f(s)

if(s)

4. Updates=s+5

5. Check if 15] < tolerance,

if yes, root = s and stop

if no, go to step 2.

By knowing the arc length coordinate of an arbitrary point on the PC curve, its corre-

sponding Cartesian coordinate can be easily determined by using equation (C.12).
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D Interface With GAMMA2D

Presently, the interface with the SRB2D code is through a user supplied grid file which con-

tains node definition, element definition, element connectivity and, possibly, some geometric

data for defining user prescribed profiles such as a nozzle contour or the profile of an eroding

pocket. These profiles are treated as parametric cubic splines so that ruled curves may be

readily established to perform surface nodal projections (for grid refinement) and surface

node redistribution (for remeshing), see Appendix C for details. COMCO has developed

an in-house grid generator, GAMMA2D, to automatically generate this grid file which can

be readily interfaced with SRB2D. For details see the GAMMA2D user's manual and the

SRB2D user's manual.

E Summary of the Postprocessing Capabilities

For the sake of completeness of the final report, we summarize the current postprocessing

capabilities of the code.

1. Pointwise or nodewise aerodynamic data extraction.

For the purpose of engineering analysis, it is highly desirable that the CFD codes can

provide quantitative information about the flowfield. Nodewise data extraction allows

a user to extract desired flow prooperties from the computed solution for a given point

or a given boundary in the computational domain. These aerodynamic data include

all conservation variables, all primitive variables, pressure coefficient, Mach number,

shear stresses, entropy change, total enthalpy change, total energy loss, etc.

2. Image of the initial grid and adapted grid with an option to show a section of the

computational domain..

3. Contour plots.

Contour plotting of flow variables is a very popular method to show the distribution of

flow properties throughout the computational domain. The code is capable of plotting

the contours for the following flow properties: all conservation variables, all primitive

variables, Mach number, vorticity, entropy change, total enthalpy change, total energy

loss, molecular viscosity, eddy viscosity, turbulent length scale, etc.

4. Velocity vector plot and streamline plot.

These plots are very useful to resolve complicated flow topologies such as vortex shed-

ding, flow separation, flow reattachment, etc.
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5. Total massflux, total force, total heat transfer, total moment calculations.

To activate thesepostprocessingcapabilities in the code,the userprovideskey words in
semanticform in the input deck. Thesekey words areusually accompaniedwith someuser
specifiedoptions. Seethe SRB2D user'smanual for details.
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